药智论坛

查看: 2429|回复: 3
打印 上一主题 下一主题

最全的脂质体技术总结(上)

[复制链接]
跳转到指定楼层
主题
发表于 2021-9-13 11:15:18 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式 来自 重庆
本帖最后由 大麦1992 于 2021-9-13 11:21 编辑

脂质体的粒径控制:概述



脂质体(Liposome)作为一种药物传输的剂型,是一种人工合成膜。它与人体最基本结构和功能单位——"细胞"的质膜系统结构非常接近,与人体的生理相容性非常好,使其作为一种载药体系时,人体对其排斥反应小。而脂质体膜作为人工合成膜的另一优势是,可以进行各种功能修饰,从而具备更多的延伸功能,如靶向性、长循环等。

脂质体的膜结构主要由磷脂和胆固醇组成。磷脂作为脂质体膜结构的基础,由于具有两亲性,亲水头部聚集朝向一侧,疏水尾部朝向另一侧,形成较为稳定的具有双分子层的封闭囊泡结构。胆固醇在脂质体结构中起稳定性作用,当环境条件改变(如温度、渗透压、pH等)时,能起到增强脂质体结构稳定性的作用。

渗透——停留——释放

脂质体在全制备过程中,由于粒径的大小和分布情况对后续的稳定性、包封率等都有着非常重要的影响。因此,脂质体的粒径控制是脂质体制备过程中的基础,也是非常重要的一个环节。脂质体粒径控制的方法目前比较多,相对而言要减小粒径达到所需要求也比较容易,但是要筛选出一个既稳定可靠、又重现性好、还适于生产放大的工艺,仍需费一番思量。在诸多方法和设备中如何去选择,最终还需依赖脂质体的基本结构特点、自身在研脂质体品种的特殊性而决定
有机相与水相水化形成脂质体后往往其粒径的大小和分布不符合要求,必须予以适当的整粒,也就是我们常说的粒径控制。而目前可以用于减小粒径的方式也较多,主要有:超声波、剪切、均质、挤出四种




脂质体的粒径控制:超声波


超声波的特点在于其输出能量集中,密度大。适合于小量(一般建议10ml以下)各类脂质体样品的粒径控制使用,尤其适合于微量的载药型脂质体粒径控制。

超声波在用于样品粒径控制时,由于距离其探头远近不同的样品粒子所接收的能量差异较大,导致容器中不同部位的样品粒子粒径差异较大。样品越多,容器越大,此差异就越明显,不适合于产业化放大。

所以,在进行脂质体论文研究或立项阶段的可行性研究实验时,超声波由于其通用性及成本低的优势,是一个非常理想的选择方式。而在有产业化方向或要求的脂质体项目研究中,建议选择其他方式进行粒径控制


脂质体的粒径控制:剪切

剪切的原理在于,样品粒子通过定转子之间的狭窄缝隙中可形成非常剧烈的湍流,并由机械传动结构所传递的能量对样品粒子进行高线速度的剪切,使样品粒子达到细化的效果。

剪切设备在脂肪乳的制备过程中是非常重要的一个设备,在脂质体领域的应用相对较少。这是因为,脂质体的结构较为柔弱,在减小粒径的过程中需要吸收一定的能量,但能量不能过大,否则容易造成脂膜结构的损坏。而剪切的特点在于能量过大,控制不慎则容易过度,造成脂质体的破损。

所以,
剪切设备在应用于脂质体粒径控制的时候,常常需要将剪切技术和混合、搅拌技术相结合,设计特定的容腔结构、定转子结构和缝隙大小,并在工艺过程中对传质、传热和力学(粒子表面张力和应力)分析的研究要比较深入,并有理论计算基础,这样才能用好。

正是由于这种特殊性,剪切在脂质体粒径控制的应用中使用较少,但往往有特殊要求的应用场合中会比较有优势,比如:
部分特殊被动载药型脂质体、多囊脂质体等。
剪切也常常作为一种过程技术,与其他设备配套使用。如均质、挤出。


脂质体的粒径控制:均质

均质技术的首次亮相是在1900年巴黎世博会,距今已经有一百多年的历史。均质技术最初设计为食品乳化用,用于控制乳制品的粒径。后来由于均质技术的通用性及其独一无二的适于放大的优势,逐渐在制药行业中崭露头角。国内制药行业大约20年前引进此技术,并已大量用于如:营养性脂肪乳剂、载药型脂肪乳剂、特殊功能医学食品等领域。
当然,均质技术在脂质体行业也有着非常广泛的应用。早期上市脂质体品种,如:两性霉素B、阿霉素,都采用了均质技术作为生产上的核心设备。均质技术主要有两种:一种是高压均质技术,一种是微射流技术。二者既有着一定的相似性,也有各自的特点,在不同的应用与实际项目中都有着比较多的应用。



(一)能量转换

均质过程总的来说是一个能量转换的过程。从此角度可将所有均质设备的运行分为3个过程:能量来源与转换、能量传输和能量使用。
能量来源与转换均质设备的能量来源有三种:电能液压能气源能
一般来说:电能作为动力源时是通过电机的运行直接将电能进行转换,作为均质设备的动力源;
液压能是通过电机将电能转化为液压能,再转化为机械能从而作为均质设备的动力源;
气源作为动力源时,往往其压力达不到均质设备所需的压力,所以实际应用中是通过增压单元将气压进行增压后作为均质设备的动力源。
这三种动力方式都有着各自的特点,在市售的均质设备中都有着比较广泛的使用,这里做一个简要的说明:


电能
电能直接作为均质设备动力源时,其特点是能量来源和动力传输都比较稳定,其输出压力和设备产能适中,设备运行噪音小,比较适合制药行业的特点,因而应用面最广此类型均质设备最高可稳定输出压力一般在2000bar左右,流量最大可到1000L/H或以上,最小型设备的单次最小样品量可做到约5ml。在具体选择此类均质设备时,需综合考虑三个因素:样品总量使用压力单次使用时间。可以将样品总量和单次使用时间二者结合后计算出所需设备的流量,再结合使用压力进行均质设备动力的选型。其中,在进行所需设备流量计算时需注意:与使用时间相结合的样品总量是单次样品量与均质次数的乘积,且需考虑多次均质时中途切换的时间


液压能液压能作为均质设备动力源时,其特点是动力来源和传输都比较稳定,输出压力高,特别是高压(2000bar以上)运行时的稳定性好。一般来说最高压力可以达到3000bar或更高,流量也很大,可以到每小时吨级以上。但此类型设备噪音较大,体积大,耗能大,且因泄漏造成污染的风险也相对较大,因而在制药行业的应用中相对较少。但对于需要2000bar以上工作压力的样品,可考虑此类型设备


气源能气源作为均质设备的动力源时,其特点在于设备结构简单,体积小。但均质设备往往所需的工作压力高(一般在1000bar左右),所以气源往往需要增压后才能作为均质设备的动力源。一般来说,气源提供的压力和流量均有限(仅限于一般的工况条件,特殊设计的气源供应系统除外),所以高压运行时如果设备所需流量大则容易有压力不稳定,出现大幅波动或下降的情况。所以,此类型均质设备一般比较适合于实验室设备使用可实现高压功能(如3000bar),也可实现微量样品均质要求(如3ml),但生产上往往不合适


能量的传输


动力源将能量接收后即通过各自的转换机构将能量转移至工作单元,可通过机械连杆传输、皮带传输、齿轮传输等各种方式,该环节的设计主要由机械设计人员考虑,主旨是使能量传递最稳定,损耗量最小。客户端除考虑设备能耗因素时需着重考察外,其他不必过于关注。
均质设备中与能量传输相关的部分属机械部分知识,与具体应用的关联性不大,这里就不做详细介绍了。


能量的使用



能量来源已有,也传输过来了,如何才能把这些能量用好呢?这就可以关联到具体应用项目中来了。
均质设备的能量使用单元即为均质单元。均质单元通过其特殊的结构和流道设计,能产生很高的背压。其过程为:动力传输单元将样品输送至均质单元的背压模块时,由于其特殊结构设计,使样品流道急剧变小,进而对样品粒子进行增压、增速,并在特殊结构中进行爆破、碰撞、剪切,能量也就在此过程中传递给样品粒子,使其破碎,粒径变小
此单元主要有两方面的因素会极大影响均质的效果:能量转化率产热量


从均质单元类型上来说有分体狭缝式(也称均质阀式)和整体狭缝式(也可称微射流腔)。均质阀式有剧烈释压型和温和释压型;微射流腔有Z型和Y型。这几种不同的结构类型在实际使用中都非常广泛,差别也较大。




一、均质阀式(分体狭缝式)
一般来说,此类型均质设备的均质单元称为均质阀。分为三个组件:均质阀座均质阀芯冲击环
均质阀座与均质阀芯预先贴合,当均质设备动力单元将样品吸入并输送至均质单元时,样品由前端流道挤入至均质阀座孔道内,由于均质阀座的孔道(一般直径1mm~3mm)比前端流路管道小很多,所以样品内部能量急剧增加,并将均质阀座和均质阀芯挤出一条缝隙,样品粒子由此缝隙高速喷出,并经冲击环内侧撞击后喷射而出,完成均质过程。

此过程中,从狭缝中喷出的瞬间由于存在巨大的压力差(即为均质设备显示压力,一般可以到1000bar以上),使粒子产生巨大的爆破作用,同时由于高速喷射而出,与冲击环内侧的撞击力及粒子之间的剪切力共同作用,使粒子达到粒径减小的效果。
过程中均质阀座与均质阀芯之间的贴合紧密度直接影响样品冲破缝隙所承受的阻力,此阻力的大小即为均质的压力,一般来说阻力越大,即均质压力越高、爆破力越强、喷出速度越高,所形成的粒子间剪切力、与冲击环之间的撞击力也越强,均质能力就越强,粒径就越小。而均质压力大小的调节通过调节均质阀座与均质阀芯之间的贴合紧密度来实现。
除均质阀座与均质阀芯之间的贴合紧密度影响外,均质阀座的出口释放距离也极为重要(一般称均质阀座边宽),可以理解为,能量一定的情况下,边宽越窄,能量损耗越小,其喷射出的速度就越高,均质效果也就越好
综上,对于均质阀式的均质设备,影响均质效果的因素除均质压力外,还与均质单元的能量转换率有关。
此外,均质过程中由于存在巨大的爆破力和撞击力,其总能量除用于均质破碎所需能量之外,必然有一部分会变成热量,且均质压力越高,次数越多,产热越多。所以均质设备一般需配备高效热交换器,可通过接入的冷媒对样品进行适度降温,以辅助达到最佳的均质效果

二、微射流容腔式(整体狭缝式)


不同于均质阀式的均质设备,微射流容腔是一个整体式的狭缝,其大小一般为75μm/100μm,不可调节。其原理为样品粒子通过容腔通道时在通道内进行高速的撞击,撞击效应和剪切效应相结合以达到均质细化的效果。一般根据通道结构的不同可以分为Z型Y型
均质阀式的均质设备是通过调节均质阀座与阀芯的紧密程度来改变缝隙大小从而改变均质压力的大小来改善均质效果。而微射流容腔的狭缝大小不可调节,其均质压力的调节通过流速的调节来实现。即在缝隙通道固定的情况下,流速越大,压力越高,碰撞力越强,均质效果也就越好

温度的产生和控制与均质阀式的均质设备基本相同。


三、均质阀式与微射流容腔式的对比


均质阀式与微射流容腔式的均质设备在脂质体领域应用均比较多,二者有各自的一些特点,有相似性也有不同点。
首先,由于脂质体样品是以磷脂为膜材形成的脂质双分子层,在一定温度条件下,其刚性远远低于无机材料或硬度较大的其他粒子,脂质体粒子柔性较强,其粒径减小所需的能量并不大,因此从这个角度来看,两种类型的均质设备均可以满足脂质体样品减小粒径的要求。
除粒径大小外,脂质体样品对粒径的分布要求非常高,一般PDI均需达到0.1以下。针对此特性,微射流容腔式的均质设备就优势非常大,主要在于:微射流容腔式的设备动力部分活塞直径小,行程长,这就使得其输出的均质是高压持续时间长、压力稳定,且缝隙非常小,所以其能量转换率高,脉冲波动非常小,样品粒子经过容腔所受到的工艺条件基本相同,所以其均质的样品PDI一般都非常小,可以直接达到要求

而均质阀式的均质设备由于柱塞较粗,行程短,压力脉冲波动较大,其粒径均一性较差,往往均质后的样品平均粒径能达到要求,但PDI往往与预期效果有一定的差距。微射流容腔式的均质设备压力波形呈梯形状,且上升与下降的时间非常短,而均质阀式的设备压力近似于正弦波,波动较大。

当然,均质阀式的均质设备特点在于均质压力适中,但流量比微射流容腔式均质设备大很多,所以当其用于脂质体样品均质时可大大减少均质过程所需的时间。此类型设备常与挤出设备配套使用,部分类型脂质体品种效果极佳

所以,选择均质设备作为脂质体粒径控制的设备来看,二者各有其特点,如何选择主要取决于工艺要求(效果和效率)以及验证便捷性,不能一概而论。



脂质体的粒径控制:挤出

脂质体挤出技术充分利用了脂质体膜材的结构和性能特点,在略高于磷脂相变温度的条件下,通过一定的压力驱动,使脂质体粒子通过聚碳树脂滤膜,通过膜材的剪切力来减小脂质体粒径,控制其分布。由于聚碳酸酯滤膜的孔径固定(如50nm,100nm等),可有效确保脂质体粒子在通过滤膜后其粒径大小集中在滤膜孔径大小的附近,一般在±10%的波动范围内(有相关文献已对此进行了较为详细阐述和计算说明),所以工艺选择得好时,挤出技术可将脂质体的粒径分布控制在非常窄的范围内(一般PDI可到0.01~0.03之间)。而如何选择一个比较好的脂质体挤出工艺往往涉及到三个非常重要的因素:挤出温度、挤出压力和挤出滤膜的选择。

脂质体挤出工艺因素
挤出温度

由于脂质体是一种人工合成的类似于细胞膜的质膜结构,其主要成分是磷脂和胆固醇。磷脂都有一定的相变温度,当脂质体温度在磷脂相变温度时,质膜的流动性较好,表现为柔性,此时通过PC滤膜较为温和的剪切力即可有效的减小脂质体粒径,并使其分布控制在很好的范围之内。

反之,若挤出过程温度过高或者过低均得不到理想的效果。当温度过高时,脂质体膜的微观流动性大,稳定性差,在通过PC滤膜时,即使较低的剪切力也容易造成脂质体膜结构的损坏,造成脂质体的破碎和药物的泄露;若挤出过程温度过低时,脂质体粒子膜流动性差,刚性强,过膜时会有大部分粒子是强行将膜孔撑大后挤出,其粒径大小和分布并未得到有效的控制。


所以,在选择挤出技术作为脂质体粒径控制的方法时,一定要对温度做有效的控制。一是温度的范围,不能过高或过低;二是样品所经过或接触的挤出设备相关部位要实现恒温控制,不能有太大的温度差异。


挤出压力
挤出压力即为脂质体过膜时所受到的剪切力。此剪切力的大小直接决定了脂质体粒径控制的效果。而如前文“挤出温度”部分所述,脂质体粒子在过膜时柔性较强,也容易发生形变,所以过滤的速度就显得尤为重要。如果过膜的速度过慢,则脂质体粒子有可能是通过发生形变的方式通过挤出膜,过膜后即恢复原状,其粒径大小并未发生实质性改变;如果过膜的速度过快,则有可能因表面切应力的骤变过于剧烈而导致脂质体粒子破坏,造成结构的损坏。而此过膜的速度取决于挤出的压力。
所以,如何选择一个合适的挤出压力就非常重要。总体原则是在不损坏脂质体粒子结构的前提下,尽量提高压力,这样挤出的速度快,效果也好。作为挤出压力的动力提供源既可以是高压气体,也可以是高压泵,两者在具体选择和使用时也有所差别,此部分内容将在后续文章中做详细介绍。


挤出滤膜的选
挤出滤膜是脂质体挤出的动作执行者,也是挤出压力的产生者,其对挤出效果的优劣有着至关重要的作用。一般来说,对于某一个脂质体样品的挤出,既可以选择单张滤膜的梯度挤出方式,也可采用多层滤膜的叠方式,可根据实际工艺需求选择最优方案。

一般来说,在选择脂质体挤出滤膜的孔径时,需先测定挤出前脂质体样品的原始粒径,并与最终所需达到的目标粒径相结合进行考虑,然后确定选择何种滤膜。举例来说,如果样品原始粒径为400nm,最终粒径需要到80nm以下,则可初步考虑两种方案进行粒径控制:
第一、采用单层膜的梯度挤出
此时,可先用200nm的滤膜进行挤出,观察其挤出过程,若样品非常难挤出,则需更换为400nm滤膜作第一次挤出;若挤出过程比较顺畅,则就用200nm滤膜作为第一次挤出用膜,挤出次数一般建议3~5次,可在后续工艺过程中进行优化;200nm滤膜挤出完成后,可选用80nm或50nm的滤膜进行挤出,其摸索过程同上,若样品无法挤出则中间需增加100nm滤膜作为过渡。用此方法进行挤出时,选择原则是在能达到脂质体粒径控制效果的前提下,所选用的滤膜种类尽量少,这样可以大大简化操作过程,且更利于产业化放大。


第二、采用多层膜的叠加挤出
此时,由于其原始粒径为400nm,目标粒径为80nm,则多层膜叠加时最大孔径的滤膜不大于400nm,最小的孔径不大于80nm,中间可适当选择过渡孔径的滤膜。如:可采用400nm+100nm+80nm、200nm+100nm+50nm、200nm+80nm、200nm+50nm、100nm+80nm、100nm+50nm等方式进行膜的组合。
此种方式的优势在于通过一种膜组合即可完成挤出过程,达到所需效果,中途不需要更换滤膜;其难点在于膜组合的方式比较多,如何选择合适的膜组合需要结合脂质体的类型进行合理设计,并在实际实验过程中逐步优化至最终确定。

总结
挤出技术的关键点主要就是如上所述的三点:挤出温度、挤出压力、挤出滤膜的选择。然而不同类型的脂质体特性差异较大,挤出设备的种类也较多,如何针对特定的项目选择最合适的挤出设备和挤出工艺往往需要将诸多因素结合起来考虑,然后再确定


脂质体挤出设备

脂质体挤出设备从结构上来分大概可分为四个部分:动力执行单元膜组件单元温控单元辅助单元

动力执行单元
动力执行单元按目前市售产品来看主要有两种:高压气体高压动力泵


一、高压气体
高压气体作为动力源时最大的特点是压力恒定,无脉冲波动,可以确保全挤出过程中的压力恒定,其波动范围基本可以忽略不计,这就能最有效的保证所有脂质体粒子都经过了同样压力的挤出,所挤出的脂质体样品均一性非常好,能比较好的符合所需的粒径分布要求

但此方式的缺点在于气压所能提供的压力较低(一般不超过1000psi),这就导致很多原始粒径较大的脂质体样品,或浓度较高的脂质体样品不容易挤出,挤出速度缓慢,且达不到所需的粒径范围;对于产能要求较高的项目(如中式、生产型)往往不能实现。
当然,针对这种情况也有相应的设备对气压进行了增压设计,适度扩大了其应用领域,但对于生产项目往往还是难以满足要求。这类挤出设备多以罐体作为容器,气体直压式挤出为主,也有部分以使用气缸对气体增压活塞推进的方式进行挤出,实验室使用时基本可以比较完美的覆盖所有脂质体样品的挤出要求。


二、高压动力泵
另一种方式是通过高压动力泵作为动力来实现脂质体的挤出,如高压活塞泵高压隔膜泵
高压泵作为挤出设备动力源时其特点是:
  • 可提供的挤出压力高(最高压力一般在300~500bar),可满足浓度比较高或者原始粒径较大的脂质体样品的挤出;
  • 能实现产能大(高压泵最大流速可以到1000L/H或者更高),对于需要多次挤出的生产型项目能大大提高挤出效率。

但高压动力泵作为动力源时也有其弊端
  • 动力泵存在一定幅度脉冲,这就使得挤出过程的压力处于波动状态,往往不利于提高脂质体的粒径均一性。目前多采用压力反控调节泵速以维持压力恒定的模式来消除此影响,但由于压力感应器存在一定的感应误差及感应时间,且泵的变频调节执行动作也需要时间,所以高压动力泵作为挤出动力源时在实际挤出过程中压力是一个波动的状态,产能越大其误差就越大,所以在使用时需对此多加关注;
  • 高压动力泵由于其压力高,所以往往存在一些非标准卫生级结构(如单向阀、活塞密封、高压输出单元等),这就会造成两方面的影响,一是样品消耗量相对较大,二是存在一定的卫生级风险,对清洗和灭菌验证造成困难(一般难以实现CIP/SIP)。

当然,市售也有高压卫生级隔膜泵(最高压力一般到100bar),但此类设备压力属于折中范围,且价格高,选择时需综合考虑。

膜组件单元
膜组件单元包括PC滤膜、支撑板等组件,是挤出设备压力产生的背压单元,也是起挤出作用的核心部件。关于滤膜的选择方法在上一篇中已有相关讲述,就不再赘述了,这里主要就支撑板等组件做一个简单描述。
支撑板目前市售挤出设备中多采用SS316L粉末烧结板为主,其孔径一般为1~3μm,其在使用时最大的优势就是能迅速产生较高的背压(如200bar或更高),且板的厚度适中,耐用性强,能长时间使用不变形,是目前用得最多的一种方式缺点在于由于是粉末烧结的结构,内部通道孔径为计算值,且流道弯曲、复杂,易造成内容物残留,引起微生物负荷、内毒素残留的超标。所以在选择此方法时需供应商提供完善的清洗和灭菌方案,以确保能满足项目的需求。另一种方式是采用通孔支撑板的方式,此方式由于是通孔设计,易于清洗和灭菌,往往能符合CIP/SIP要求,但此种方式需对挤出过程和样品特性有非常深入的了解,且能将二者作为一个整体进行综合考虑,然后再来选择或特殊制作。


温控单元
温控单元一般涉及到两方面:一是挤出设备本体与样品接触的结构,二是样品流路管道
如上一篇文章所述,温度是挤出过程的一个非常重要的影响因素。所以在进行挤出设备选型或设计时,需将此两部分可能产生的温度波动幅度降至最低。一般挤出情况下温度波动控制在±3℃即可,此时只需用可外循环的恒温水浴,通过设备和管道的夹套控温就可以满足要求
但如果恒温要求高(如要求波动范围在±0.5℃以内),此时就需要通过在关键部位设置温度传感器,并与恒温水源形成联动控制,整体调节温度,使其达到所需要求
当然,从工程角度来看,温度的控制精度可以做得非常高,但相应的成本也较高,所以在选择时需要根据实际情况综合考虑。

辅助单元
辅助单元是指除挤出设备主体部分外的其他配置。如因工艺要求增设的温度、压力监控和调节单元;恒压或恒流控制系统;管道、阀门及连接件;升降平台、移动推车等

对于此类配置,一般来说主要针对生产项目,可根据项目的工艺特殊性要求、与配液系统的衔接、清洗/灭菌要求来针对性的进行设计。标准的实验室设备一般都会综合考虑各方面因素,进行取舍后逐步标准化,后续不会再有太大幅度的调整。用户端在进行选择时往往也需结合自身项目需求进行取舍后选择最合适的设备。


EB9987AF-11F9-42c1-A8C8-39D683816ACE.png (5.98 KB, 下载次数: 26)

EB9987AF-11F9-42c1-A8C8-39D683816ACE.png
沙发
发表于 2021-9-14 08:12:07 | 只看该作者 来自 内蒙古
学习了,谢谢提供分享。
回复

使用道具 举报

板凳
发表于 2021-12-23 14:38:05 | 只看该作者 来自 广东广州
谢谢楼主
回复

使用道具 举报

地板
发表于 2022-1-18 08:58:21 | 只看该作者 来自 广东中山
感谢分享,楼主
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

QQ|论坛规则|(渝)-经营性-2021-0017|渝B2-20120028|前往 违法和不良信息举报中心 举报|药智论坛 ( 渝ICP备10200070号-7

渝公网安备 50010802004459号

GMT+8, 2024-5-9 10:01

快速回复 返回顶部 返回列表